Inconspicuous anterior implant-supported restorations: Combining clinical and laboratory expertise

By Dr. Larry R. Holt, USA

By Dr. Larry R. Holt, USA

The ultimate goal of tooth replacement in the esthetic zone is an inconspicuous transition from dental restoration to the patient’s natural, biologic tissues. This transition is evaluated at many levels. Color and contour of gingiva at the interface must mimic the natural contours and color of adjacent and contralateral teeth.

The dental restoration must match contour and blend seamlessly into the existing dentition. Color matching of final crown must be consistent with existing dentition (hue, chroma and value). This case study explores the management and correction of a previously treated implant-retained maxillary central incisor.

The patient presented as a healthy, 48-year-old female with no contributory health history to prohibit dental treatment. Recent dental history revealed an Ankylos implant to replace tooth 11 that had been placed approximately five months prior to this visit. The implant had been uncovered and a temporary abutment was placed.

A ridge lap provisional restoration was fabricated to fit the coronal portion of the abutment. The resultant provisional was not only unesthetic but also was the source of considerable tissue inflammation and patient discomfort (Figs. 1, 9). Patient reported dissatisfaction with the provisional treatment and was seeking a more desirable solution.

Clinical evaluation revealed a well-placed implant with acceptable position both facio-lingually and mesiodistally. Additionally, there was good volume of soft tissue and ridge form was ideal. Surgeon reported that the implant was well-integrated in bone. There was a poorly adapted provisional restoration over an inadequately contoured provisional abutment. Radiograph revealed excess acrylic that extended well into the dental sulcus all the way to the implant platform (Fig. 4). This acrylic did not provide any emergence profile support of transmucosal tissue.

The provisional restoration was poorly adapted to both the abutment and to the ridge crest soft tissue. Intaglio surface was rough and made in such a manner as to create a ridge lap profile. The facial and proximal surfaces of the provisional were fitted over soft-tissue crest. There had been no attempt to modify gingival tissue emergence profile or to create the environment for inconspicuous transition from restoration to biologic tissues.

The provisional was removed, and a ridge lap provisional restoration over an impression was placed and pressed. The resultant crown, fabrication of a temporary partial denture (Figs. 5, 6) and placement of an appropriate temporary abutment that did not retain a provisional crown (Ankylos sulcus former) (Figs. 7, 8). This sulcus former, as its name implies, would provide soft tissue emergence profile support. The partial denture was to be placed to avoid interference with the sulcus former when fully seated (Fig. 8). Patient was to be recalled in one-week intervals to evaluate the response to this treatment. Once healed, a final, customized abutment and cementable all-ceramic crown would be delivered.

The plan was followed per previous description. Postoperative visits were uneventful. Patient comfort was immediate. Tissue health and emergence profile were deemed appropriate at the second week recall visit (Figs. 9–10).

Techniques for managing emergence profile are well-documented in the literature. Interproximal tissu es will point and form papillae when appropriate lateral pressure is applied with a temporary abutment, when natural teeth are on either side of the implant. The adjacent bone height will dictate the level of the papillae assuming the restoration and its associated abutment properly support them. Facial contour can be manipulated to create appropriate gingival zenith height by increasing or decreasing facial emergence profile. Increasing the profile will move the gingival zenith apically and reduction of contour will move the crest incisally.6

Treatment plan consisted of removal of temporary abutment/provisional crown, fabrication of a temporary partial denture (Figs. 5, 6) and placement of an appropriate temporary abutment that did not retain a provisional crown (Ankylos sulcus former) (Figs. 7, 8). This sulcus former, as its name implies, would provide soft tissue emergence profile support. The partial denture was to be placed to avoid interference with the sulcus former when fully seated (Fig. 8). Patient was to be recalled in one-week intervals to evaluate the response to this treatment. Once healed, a final, customized abutment and cementable all-ceramic crown would be delivered.

The plan was followed per previous description. Postoperative visits were uneventful. Patient comfort was immediate. Tissue health and emergence profile were deemed appropriate at the second week recall visit (Figs. 9–10).

At a subsequent appointment, the sucaus former abutment was removed, a closed tray impression coping, wax, bond and an impression (Identium, Kettenbach) was taken for fabrication of final restoration (Figs. 9, 10). Appropriate coping model, bite registrations and facebow accompanied the case to the laboratory. A careful shade map and clinical photography were included.

Clinically, it was determined that this would be a difficult shade because of surface characteristics and骂erick colors of the adjacent central incisor. Arrangements were made to have a laboratory technician available at the delivery appointment. Sclerus former and temporary partial were reinserted and patient was dismissed and scheduled or delivery appointment.

All model work was accomplished. The laboratory was given the option of fabricating a custom abutment or customizing a stock abutment. This decision was to be based on the trajectory of the abutment relative to the position of the implant. The placement of the implant was ideal and the use of a lab-modified, stock abutment was selected (0 degree Cereson Balance Abutment, Dentistry Implant).

The contour correlation between the sclerus former and the emergence profile of the stock abutment complement one another. The margins were placed 1 mm subgingivally on facial, mesial and distal. The lingual margin was placed at 5 mm.

Once the abutment was perfected, an all-ceramic crown was fabricated (eMax, Ivoclar). The coping was waxed to full contour, and then the facial was cut back to provide a field into which a customized facial surface could be developed from added porcelain. The wax pattern was invested and pressed. The resultant crown was then modified with additional application of porcelain and was left preglazed in anticipation of chairside staining (Figs. 13, 14).
The delivery appointment was un-
eventful. The lab provided a seating
jig that simplified the position of the
customized abutment (Fig. 15). The
abutment was torqued to man-
ufacturer’s specifications (Figs. 16, 17).

The crown was tried in and adjust-
ments were made to proximal contacts and to occlusion. A dental laboratory technician was enlisted to provide custom crown-staining to perfect the color match. Both patient and clinicians were satisfied with the resulting crown. The margin fit was checked.”

The patient was rescheduled at a two-
week interval for a final evaluation and photography. She was extreme-
ly satisfied with both the esthetics and comfort of the definitive restora-
tion. Clinically, the restoration met the criteria for an inconspicuous re-
storative (Figs. 19, 20).

Conclusion

Understanding of the soft-tissue interface with implant-supported restorations is critical, fundamental knowledge. All practitioners whose goal is to deliver inconspicuous restorations should practice these con-
cepts. This case study revealed the stark contrast between tissue-man-
gement protocols. There is no place in contemporary implant dentistry for ridgelap crowns assuming approp-
riate pretreatment parameters are met.

The esthetic zone must be evalu-
ated prior to implant placement and any modification of the ridge form should be taken into consideration well in advance of implant place-
ment surgery.4 Surgery should be
driven by predictable requirements. Once surgery is accomplished, it is imperative that restorative cli-

icians understand how to manipulate the peri-implant soft tissues. All of this tissue management is critically important. However, then comes fabrication of the final resto-
ration. The abutment must be de-
signed in such a way as to conceal the crown/abutment interface. For-

thermore, it must allow for adequate crown thickness to have appropriate strength to withstand mastication forces and still remain retentive. The final contours of the crown must be managed in such a way as to blend into the existing dentition. This patient did not have a symmet-
rical arch form. The lateral incisors were not bilaterally symmetrical nor were the incisal edges consistent. Finally, the color match of the res-
toration, especially a central incisor, must be as identical as possible to the existing dentition. None of these parameters can be accomplished without precise communication and excellence in laboratory work.

This case was a success based upon
all previously described parameters. The gingival contour was essentially mirror image identical to the adja-
cent central incisor. Papillae were intact. The laboratory was skilled at modification of the abutment so that the margins were concealed within the sulcus. The axial and in-
cisal contours of the abutment pro-
vided adequate clearance so that a proper thickness crown could be developed.

This is critical for both esthetics and for long term strength and stabili-
ity of the definitive restoration. The technician selected the appropriate
ingot of ceramic material to serve as substrate for the subsequent applica-
tion of modifying porcelain and sur-
face finishing. Final color matching could not have been accomplished without skilled hands and eyes of a technician at chairside.

Close communication and strong laboratory relationships, along with appropriate clinical understanding of soft-tissue management, leads to success. The inconspicuous final result of this case could never have been accomplished without strong support from the dental laboratory.

References

1. Kois J. Predictable single tooth peri-implant esthetics: five diagnos-
2. Lorenzana JR. Soft-tissue risk as-
essment in esthetic restorative and implant dentistry: smile analysis, gingival esthetics, and dental im-
3. Saadoun et al. Selection and ideal tri-dimensional implant crowns for soft tissue aesthetics. Prac Perio An-
5. Lee, Fu, and Wang. Soft Tissue Bio-
type Affects Implant Success. Implant Dentistry Volume 20 • Number 3 • 38-44.
6. Priest. Esthetic Potential of Single Implant Provisional Restorations. Selection Criteria of Available Al-
ternatives. JREDS Vol 18, Number 6, 2006 525-148
7. Belser U. E. Esthetic guidelines for restora-
8. Wadhwani C, Pizyeno A. Tech-
anatomic and surgical considera-
10. Martin WC, Morton D, Buser D. Pre-operative analysis and pros-
thetic treatment planning in esthetic implant dentistry. In: Buser D, Belser U, Weinmeier D, eds. ITI Treatment Guide; I. Implant Therapy in the Esthetic Zone: Single Tooth Replace-
11. Jivraj S, Chee W. Treatment plan-
ing of implants in the aesthetic zone. Br Dent J. 2006 Jul 22;201(2):77-
89.
12. Tarnow D P, Magner A W, Fletcher P. The effect of distance from the contact point to the crest of bone on the presence or absence of the inter-
proximal dental papilla. J Periodon-
tal 1991; 63. 886-995.

Larry R. Mohl, DDS, RCD, graduated from the UNC School of Den-
tistry in 1978. He is in private practice from 1978-2008. Since 2008, he has been the director of clinical education and research of Drake Precision Dental Laboratories in Charlotte, N.C.